基于效用最大化的投资组合旋转算法研究
财经研究 2005 年 第 31 卷第 12 期, 页码:118 - 127
摘要
参考文献
摘要
文章综合考虑投资组合的期望收益率和风险(方差),提出了基于效用最大化的投资组合模型,并用线性不等式组的旋转算法进行求解。计算结果表明,在允许卖空的情况下,风险偏好系数能够在整个变化范围内较好地反映投资者的期望收益率,而在不允许卖空情况下,风险偏好系数只能在某个区间起作用。因此,投资者应结合自己的风险偏好和投资组合的期望收益率作出决策。文章运用自编程序能够很快地计算出各种不同的风险偏好系数所对应的有效投资组合,以帮助投资者得到最优投资策略。所运用的线性不等式组的一种旋转算法避免了通常处理二次规划问题所需的松弛变量、剩余变量和人工变量,操作简便、计算效率高。
[1]Markowitz H.Portfolio selection[J].The Journal of Finance,1952,7(1):77~91.
[2]Markowitz H.Portfolio selection:Efficient diversification of investments[M].Seconded.in 1991,Basil Blackwall,New York,1959.
[3]Dexter.A S,Yu,T N W,Ziemba W T.Portfolio selection in lognormal market whenthe investor has a power utility function:Computational results[M].In M.A.H.,Dempster(ed),stochastic programming,Academic Press,New York and London,1980.
[4]Pulley L M.A general mean-variance approximation to expected utility for short hold-ing periods[J].Journal of Financial and Quantitative Analysis,1981,16:361~373.
[5]Pulley L M.Mean-variance approximation to logarithmic utility[J].Operations Re-search,1983,31(4):685~696.
[6]Baron D P.On the utility theoretical foundations of mean-variance analysis[J].TheJournal of Finance,1977,32:1683~1697.
[7]Steinbach M C.Markowitz revisited:Mean-variance models in financial portfolio analy-sis[J].Siam Review,2001,43:31~85.
[8]Joseph Twagilimana.Mean-variance model in portfolio analysis[M].M.A thesis,U-niversity of Louisville,2002.
[9]李仲飞,汪寿阳.投资组合优化与无套利分析[M].北京:科学出版社,2001.
[10]唐小我,马永开.现代组合预测和组合投资决策方法及应用[M].北京:科学出版社,2003.
[11]张忠桢.凸规划———投资组合与网络优化的旋转算法[M].武汉:武汉大学出版社,2004.
[12]张忠桢,张鹏.马科维兹投资组合选择模型的旋转算法[J].武汉大学学报(理学版),2003,(1):25~28.
[13]张忠桢,张鹏.凸借款成本下均值方差投资组合问题的算法[J].武汉理工大学学报,2002,(8):90~92.
[14]钱颂迪.运筹学(修订版)[M].北京:清华大学出版社,1990.
[2]Markowitz H.Portfolio selection:Efficient diversification of investments[M].Seconded.in 1991,Basil Blackwall,New York,1959.
[3]Dexter.A S,Yu,T N W,Ziemba W T.Portfolio selection in lognormal market whenthe investor has a power utility function:Computational results[M].In M.A.H.,Dempster(ed),stochastic programming,Academic Press,New York and London,1980.
[4]Pulley L M.A general mean-variance approximation to expected utility for short hold-ing periods[J].Journal of Financial and Quantitative Analysis,1981,16:361~373.
[5]Pulley L M.Mean-variance approximation to logarithmic utility[J].Operations Re-search,1983,31(4):685~696.
[6]Baron D P.On the utility theoretical foundations of mean-variance analysis[J].TheJournal of Finance,1977,32:1683~1697.
[7]Steinbach M C.Markowitz revisited:Mean-variance models in financial portfolio analy-sis[J].Siam Review,2001,43:31~85.
[8]Joseph Twagilimana.Mean-variance model in portfolio analysis[M].M.A thesis,U-niversity of Louisville,2002.
[9]李仲飞,汪寿阳.投资组合优化与无套利分析[M].北京:科学出版社,2001.
[10]唐小我,马永开.现代组合预测和组合投资决策方法及应用[M].北京:科学出版社,2003.
[11]张忠桢.凸规划———投资组合与网络优化的旋转算法[M].武汉:武汉大学出版社,2004.
[12]张忠桢,张鹏.马科维兹投资组合选择模型的旋转算法[J].武汉大学学报(理学版),2003,(1):25~28.
[13]张忠桢,张鹏.凸借款成本下均值方差投资组合问题的算法[J].武汉理工大学学报,2002,(8):90~92.
[14]钱颂迪.运筹学(修订版)[M].北京:清华大学出版社,1990.
引用本文
张鹏, 张忠桢, 岳超源. 基于效用最大化的投资组合旋转算法研究[J]. 财经研究, 2005, 31(12): 118–127.
导出参考文献,格式为: