本文遵循“动因→机理→价值”研究主线,基于相关型和因果型两类典型推荐算法,以抖音和网飞为双案例研究对象,归纳出推荐算法驱动内容平台发展的价值动因,剖析不同价值动因驱动价值创造的机理,由此提出推荐算法驱动内容平台价值创造的理论框架。研究发现:相关型推荐算法主导的内容平台价值动因是“人以群分”和“物以类聚”,通过产生学习效应与范围经济,创造“流量”价值;因果型推荐算法主导的内容平台价值动因是“人尽其才”和“物尽其用”,通过产生复利效应和速度经济,创造“留量”价值。本文丰富了算法驱动商业模式价值创造的研究,对于进一步探索智能化商业模式有启发意义。
推荐算法驱动内容平台价值创造的机理:相关还是因果?
摘要
参考文献
4 廖觅燕, 方佳明, 杨晶晶, 等. 应对行为视角下算法推荐内容相似性对App持续使用的影响[J]. 南开管理评论, 2023, 26(3): 178-190. DOI:10.3969/j.issn.1008-3448.2023.03.017
5 刘强. 构建企业级推荐系统: 算法、工程实现与案例分析[M]. 北京: 机械工业出版社, 2021.
6 罗珉, 李亮宇. 互联网时代的商业模式创新: 价值创造视角[J]. 中国工业经济, 2015, (1): 95-107.
11 肖静华, 胡杨颂, 吴瑶. 成长品: 数据驱动的企业与用户互动创新案例研究[J]. 管理世界, 2020, 36(3): 183-204. DOI:10.3969/j.issn.1002-5502.2020.03.012
13 Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. DOI:10.1109/TKDE.2005.99
14 Agrawal A, Gans J S, Goldfarb A. Prediction Machines: The simple economics of artificial intelligence[M]. Boston: Harvard Business Review Press, 2018.
15 Akter S, Michael K, Uddin M R, et al. Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics[J]. Annals of Operations Research, 2020, 308(1-2): 7-39. DOI:10.1007/s10479-020-03620-w
16 Amit R, Zott C. Value creation in E-business[J]. Strategic Management Journal, 2001, 22(6-7): 493-520. DOI:10.1002/smj.187
17 Berman R, Katona Z. Curation algorithms and filter bubbles in social networks[J]. Marketing Science, 2020, 39(2): 296-316. DOI:10.1287/mksc.2019.1208
19 Breidbach C F, Maglio P. Accountable algorithms? The ethical implications of data-driven business models[J]. Journal of Service Management, 2020, 31(2): 163-185. DOI:10.1108/JOSM-03-2019-0073
20 Burke R. Hybrid recommender systems: Survey and experiments[J]. User Modeling and User-Adapted Interaction, 2002, 12(4): 331-370. DOI:10.1023/A:1021240730564
21 Chen H C, Chiang R H L, Storey V C. Business intelligence and analytics: From big data to big impact[J]. MIS Quarterly, 2012, 36(4): 1165-1188. DOI:10.2307/41703503
22 Eisenhardt K M, Graebner M E. Theory building from cases: Opportunities and challenges[J]. Academy of Management Journal, 2007, 50(1): 25-32. DOI:10.5465/amj.2007.24160888
23 Fleder D M, Hosanagar K. Recommender systems and their impact on sales diversity[C]//Proceedings of the 8th ACM Conference on Electronic Commerce. San Diego: Association for Computing Machinery, 2007.
24 Gregory R W, Henfridsson O, Kaganer E, et al. The role of artificial intelligence and data network effects for creating user value[J]. Academy of Management Review, 2021, 46(3): 534-551. DOI:10.5465/amr.2019.0178
25 Hennig-Thurau T, Marchand A, Marx P. Can automated group recommender systems help consumers make better choices?[J]. Journal of Marketing, 2012, 76(5): 89-109. DOI:10.1509/jm.10.0537
26 Hosanagar K, Fleder D, Lee D, et al. Will the global village fracture into tribes? Recommender systems and their effects on consumer fragmentation[J]. Management Science, 2014, 60(4): 805-823. DOI:10.1287/mnsc.2013.1808
27 Jannach D, Lerche L, Kamehkhosh I, et al. What recommenders recommend: An analysis of recommendation biases and possible countermeasures[J]. User Modeling and User-Adapted Interaction, 2015, 25(5): 427-491. DOI:10.1007/s11257-015-9165-3
28 Lee D, Hosanagar K. How do recommender systems affect sales diversity? A cross-category investigation via randomized field experiment[J]. Information Systems Research, 2019, 30(1): 239-259. DOI:10.1287/isre.2018.0800
29 Leskovec J, Rajaraman A, Ullman J D. Mining of massive datasets[M]. Cambridge: Cambridge University Press, 2020.
30 Li X T, Grahl J, Hinz O. How do recommender systems lead to consumer purchases? A causal mediation analysis of a field experiment[J]. Information Systems Research, 2022, 33(2): 620-637. DOI:10.1287/isre.2021.1074
31 Ma X M, Sun Y Q, Guo X T, et al. Understanding users’ negative responses to recommendation algorithms in short-video platforms: A perspective based on the Stressor-Strain-Outcome (SSO) framework[J]. Electronic Markets, 2022, 32(1): 41-58. DOI:10.1007/s12525-021-00488-x
32 Oestreicher-Singer G, Sundararajan A. Recommendation networks and the long tail of electronic commerce[J]. MIS Quarterly, 2012, 36(1): 65-83. DOI:10.2307/41410406
33 Oestreicher-Singer G, Libai B, Sivan L, et al. The network value of products[J]. Journal of Marketing, 2013, 77(3): 1-14. DOI:10.1509/jm.11.0400
34 Park D H, Kim H K, Choi I Y, et al. A literature review and classification of recommender systems research[J]. Expert Systems with Applications, 2012, 39(11): 10059-10072. DOI:10.1016/j.eswa.2012.02.038
35 Pearl J. Models, reasoning, and inference[M]. Cambridge, UK: Cambridge University Press, 2000.
36 Puntoni S, Reczek R W, Giesler M, et al. Consumers and artificial intelligence: An experiential perspective[J]. Journal of Marketing, 2021, 85(1): 131-151. DOI:10.1177/0022242920953847
37 Sjödin D, Parida V, Palmié M, et al. How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops[J]. Journal of Business Research, 2021, 134: 574-587. DOI:10.1016/j.jbusres.2021.05.009
38 Sorescu A. Data-driven business model innovation[J]. Journal of Product Innovation Management, 2017, 34(5): 691-696. DOI:10.1111/jpim.12398
39 Wang Y Y, Luse A, Townsend A M, et al. Understanding the moderating roles of types of recommender systems and products on customer behavioral intention to use recommender systems[J]. Information Systems and E-Business Management, 2015, 13(4): 769-799. DOI:10.1007/s10257-014-0269-9
引用本文
江积海, 周彩虹, 王烽权. 推荐算法驱动内容平台价值创造的机理:相关还是因果?[J]. 外国经济与管理, 2025, 47(2): 3-19.
导出参考文献,格式为: