[1] Fan Jun, Shen Dongqiang, Lin Fan. The impact of product image on consumer’s purchasing intentions ――Based on moderating effects of product type[J]. Journal of Marketing Science, 2014, 10(4): 97-108.
[2] Fei Xianzheng, Xiao Dengyang. How does the haptic mental imagery of applications icon influence consumer preference?[J]. Journal of Management World, 2020, 36(7): 153-171.
[3] Huang Jing, Guo Yulang, Xiong Xiaoming, Wang Yili. Impact of online picture presentation order on consumers’ purchase intention:Based on the perspective of information processing mode[J]. Journal of Marketing Science, 2016, 12(1): 51-69.
[4] Lei Lei, Huang Minxue. The exploration of product evaluation in big data time--An empirical study of text mini in online customer reviews[J]. Luojia Management Review, 2014, (1): 129-141.
[5] Li Jiang, Yan Qing, Yang Qiang, JiangYushi. Research on the impact of digital presentation on consumer purchase intention in slogan: Eye movement based evidence[J]. Journal of Marketing Science, 2019, 15(4): 52-70.
[6] Li Wei, Yan Qing, Miao Miao, He Fan, Jiang Yushi. Image congruence and visual object structure of anthropomorphic advertisement--Eye movement research based on self-construct[J]. Journal of Marketing Science, 2019, 15(2): 116-131.
[7] Lin Zijun, Wu Qionglin, Cai Fengyan. A research review on artificial intelligence in marketing[J]. Foreign Economics & Management, 2021, 43(3): 89-106.
[8] Liu Yezheng, Sun Jianshan, Jiang Yuanchun, Chen Xiayu, Liu Chunli. 4C model: Value discovery in big data[J]. Journal of Management World, 2020, 36(2): 129-138.
[9] Meng Lu, Yang Qiang, Du Jiangang, Dong Zerui. Impact of innovative product categories and ordering on consumer purchase intention[J]. Journal of Marketing Science, 2017, (4): 83-103.
[10] Qian Minghui, Xu Zhixuan. A study of dynamic recognition of consumer brand decision-making preference based on machine learning method[J]. Nankai Business Review, 2019, 22(3): 66-76.
[11] Tian Wenhui, Li Yanjun, Li Linzhu. Research on the impact of online picture content of agricultural products on consumers’ willingness to click [J]. Journal of Marketing Science, 2018, 14(Z1): 222-239.
[12] Zhu Yimin. The influences of type of fit between company and cause, and information framing on consumers’ responses to cause-related marketing[J]. Nankai Business Review, 2014, 17(4): 128-139.
[13] Aouf R S. Algorithm designs seven million different jars of Nutella[EB/OL]. https://www.dezeen.com/2017/06/01/algorithm- seven-million-different-jars-nutella-packaging-design, 2017-06-01.
[14] Balducci B, Marinova D. Unstructured data in marketing[J]. Journal of the Academy of Marketing Science,2018, 46(4): 557-590.
[15] Berry D S, McArthur L Z. Some components and consequences of a babyface[J]. Journal of Personality and Social Psychology,1985, 48(2): 312-323.
[16] Burnap A, Hauser J R, Timoshenko A. Design and evaluation of product aesthetics: A human-machine hybrid approach[EB/OL]. http://dx.doi.org/10.2139/ssrn.3421771, 2019-07-19.
[17] Chintagunta P, Hanssens D M, Hauser J R. Editorial—marketing science and big data[J]. Marketing Science,2016, 35(3): 341-342.
[18] Davenport T, Guha A, Grewal D, et al. How artificial intelligence will change the future of marketing[J]. Journal of the Academy of Marketing Science,2020, 48(1): 24-42.
[19] Dew R, Ansari A, Toubia O. Letting logos speak: Leveraging multiview representation learning for data-driven branding and logo design[J]. Marketing Science,2022, 41(2): 401-425.
[20] Diehl K, Zauberman G, Barasch A. How taking photos increases enjoyment of experiences[J]. Journal of Personality and Social Psychology,2016, 111(2): 119-140.
[21] Dzyabura D, El Kihal S, Hauser J R, et al. Leveraging the power of images in managing product return rates[EB/OL]. http://dx.doi.org/10.2139/ssrn.3209307, 2019-09-04.
[22] Dzyabura D, Peres R. Visual elicitation of brand perception[J]. Journal of Marketing,2021, 85(4): 44-66.
[23] Gabel S, Timoshenko A. Product choice with large assortments: A scalable deep-learning model[J]. Management Science, 2022, 68(3): 1808-1827.
[24] Gaudin S. At Stitch Fix, data scientists and A. I. become personal stylist[EB/OL]. https://www.cmo.com.au/article/ 599435/stitch-fix-data-scientists-become-personal-stylists, 2016-05-07.
[25] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge, MA: MIT Press, 2016.
[26] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM,2020, 63(11): 139-144.
[27] Guan Y, Tan Y, Wei Q, et al. Information or distortion? The effect of customer generated images on product rating dynamics[EB/OL]. http://dx.doi.org/10.2139/ssrn.3633590, 2020-06-23.
[28] Hall P, Gill N. An introduction to machine learning interpretability[M]. 2nd ed. Newton, MA: O’Reilly Media, Inc. , 2019.
[29] Hartmann J, Heitmann M, Schamp C, et al. The power of brand selfies[J]. Journal of Marketing Research,2021, 58(6): 1159-1177.
[30] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data mining, inference, and prediction[M]. 2nd ed. New York: Springer, 2009.
[31] Hauser J R. Phenomena, theory, application, data, and methods all have impact[J]. Journal of the Academy of Marketing Science,2017, 45(1): 7-9.
[32] Heater B. Amazon’s new Echo Look has a built-in camera for style selfies[EB/OL]. https://techcrunch.com/2017/04/26/amazons-new-echo-look-has-a-built-in-camera-for-style-selfies, 2017-04-26.
[33] Huetter J. Tractable photo-analyzing AI to assess vehicle damage for Mitchell[EB/OL]. https://www.repairerdrivennews. com/2016/10/11/tractable-ceo-says-ai-will-assess-vehicle-damage-for-mitchell-company-specializes-in-ai-photo-analysis, 2016-10-11.
[34] Jindal R P, Sarangee K R, Echambadi R, et al. Designed to succeed: Dimensions of product design and their impact on market share[J]. Journal of Marketing,2016, 80(4): 72-89.
[35] Jones A. The full picture: Using image analysis for consumer research[EB/OL]. https://www.brandwatch.com/blog/image- analysis-consumer-research, 2017-06-07.
[36] Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Science,2015, 349(6245): 255-260.
[37] Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks[A]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition[C]. Long Beach: IEEE, 2019.
[38] Karras T, Laine S, Aittala M, et al. Analyzing and improving the image quality of StyleGAN[A]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition[C]. Seattle: IEEE, 2020.
[39] Kazemi V, Sullivan J. One millisecond face alignment with an ensemble of regression trees[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C]. Columbus: IEEE, 2014.
[40] Klostermann J, Plumeyer A, Böger D, et al. Extracting brand information from social networks: Integrating image, text, and social tagging data[J]. International Journal of Research in Marketing,2018, 35(4): 538-556.
[41] Kreuzbauer R, Malter A J. Embodied cognition and new product design: Changing product form to influence brand categorization[J]. Journal of Product Innovation Management,2005, 22(2): 165-176.
[42] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[A]. Proceedings of the 25th international conference on neural information processing systems[C]. Lake Tahoe: Curran Associates Inc. , 2012.
[43] Landwehr J R, Labroo A A, Herrmann A. Gut liking for the ordinary: Incorporating design fluency improves automobile sales forecasts[J]. Marketing Science,2011, 30(3): 416-429.
[44] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,2015, 521(7553): 436-444.
[45] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[46] Li H W, Simchi-Levi D, Wu M X, et al. Estimating and exploiting the impact of photo layout: A structural approach[EB/OL]. http://dx.doi.org/10.2139/ssrn.3470877, 2019-10-16.
[47] Li Y Y, Xie Y. Is a picture worth a thousand words? An empirical study of image content and social media engagement[J]. Journal of Marketing Research,2020, 57(1): 1-19.
[48] Liesa. Introducing image recognition: The future of social listening[EB/OL]. https://www.talkwalker.com/blog/introducing- image-recognition-the-future-of-social-listening, 2016-03-09.
[49] Liu L, Dzyabura D, Mizik N. Visual listening in: Extracting brand image portrayed on social media[J]. Marketing Science,2020, 39(4): 669-686.
[50] Liu Y, Li K J, Chen H P, et al. The effects of products’ aesthetic design on demand and marketing-mix effectiveness: The role of segment prototypicality and brand consistency[J]. Journal of Marketing,2017, 81(1): 83-102.
[51] Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022, 44(7): 3523-3542.
[52] Mitchell T M. Machine learning[M]. Maidenhead: McGraw-Hill, 1997.
[53] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature,2015, 518(7540): 529-533.
[54] Murphy K P. Machine learning: A probabilistic perspective[M]. Cambridge: MIT Press, 2012.
[55] Nissan. AI technology brings excitement to Nissan Japan[EB/OL]. https://global.nissanstories.com/en/releases/nissan-ai- technology, 2022-01-21.
[56] Peng L, Cui G, Chung Y, et al. The faces of success: Beauty and ugliness premiums in e-commerce platforms[J]. Journal of Marketing,2020, 84(4): 67-85.
[57] Pieters R, Wedel M, Batra R. The stopping power of advertising: Measures and effects of visual complexity[J]. Journal of
[58] Marketing,2010, 74(5): 48-60.
[59] Raghubir P, Greenleaf E A. Ratios in proportion: What should the shape of the package be?[J]. Journal of Marketing,2006, 70(2): 95-107.
[60] Reppel A E, Szmigin I, Gruber T. The iPod phenomenon: Identifying a market leaders’ secrets through qualitative marketing research[J]. Journal of Product & Brand Management,2006, 15(4): 239-249.
[61] Rizkallah, J. The big (unstructured) data problem[EB/OL]. https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the- big-unstructured-data-problem/?sh=da78e05493a3, 2017-06-05.
[62] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature,1986, 323(6088): 533-536.
[63] Shin D, He S, Lee G M, et al. Enhancing social media analysis with visual data analytics: A deep learning approach[J]. MIS Quarterly,2020, 44(4): 1459-1492.
[64] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019, 6(1): 60.
[65] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[A]. 3rd international conference on learning representations[C]. San Diego, 2015.
[66] Sutton R S, Barto A G. Reinforcement learning: An introduction[M]. Cambridge, Massachusetts: MIT Press, 1998. [66]Tkachenko Y, Jedidi K. What personal information can a consumer facial image reveal? Implications for marketing ROI and consumer privacy[EB/OL]. http://dx.doi.org/10.2139/ssrn.3616470, 2020-06-01.
[67] Trafton A. In the blink of an eye[EB/OL]. https://news.mit.edu/2014/in-the-blink-of-an-eye-0116, 2014-01-16.
[68] Troncoso I, Luo L. Look the part? The role of profile pictures in online labor markets[EB/OL]. http://dx.doi.org/10.2139/ ssrn.3709554, 2020-11-25.
[69] Urban G, Timoshenko A, Dhillon P, et al. Is deep learning a game changer for marketing analytics?[J]. MIT Sloan Management Review,2020, 61(2): 71-76.
[70] Verganti R, Vendraminelli L, Iansiti M. Innovation and design in the age of artificial intelligence[J]. Journal of Product Innovation Management,2020, 37(3): 212-227.
[71] Vogel D R, Dickson G W, Lehman J A. Persuasion and the role of visual presentation support: The UM/3M study[R]. Working Paper No. MISRC-WP-86-11, 1986.
[72] Wedel M, Kannan P K. Marketing analytics for data-rich environments[J]. Journal of Marketing,2016, 80(6): 97-121. [73]Wedel M, Pieters R. The buffer effect: The role of color when advertising exposures are brief and blurred[J]. Marketing Science,2015, 34(1): 134-143.
[73] Xia F H, Chatterjee R, May J H. Using conditional restricted Boltzmann machines to model complex consumer shopping patterns[J]. Marketing Science,2019, 38(4): 711-727.
[74] Xiao L, Ding M. Just the faces: Exploring the effects of facial features in print advertising[J]. Marketing Science,2014, 33(3): 338-352.
[75] Xiao L, Kim H J, Ding M. An introduction to audio and visual research and applications in marketing[J]. Review of Marketing Research,2013, 10: 213-253.
[76] Xu J, Ding M. Transparent model of unabridged data (TMUD)[EB/OL]. https://doi.org/10.48550/arXiv.2106.07558, 2021-05- 23.
[77] Zhang J, Wedel M, Pieters R. Sales effects of attention to feature advertisements: A Bayesian mediation analysis[J]. Journal of Marketing Research,2009, 46(5): 669-681.
[78] Zhang M X, Luo L. Can consumer-posted photos serve as a leading indicator of restaurant survival? Evidence from Yelp[J]. Management Science, 2022, doi: 10.1287/MNSC.2022.4359.
[79] Zhang S Y, Lee D, Singh P V, et al. What makes a good image? Airbnb demand analytics leveraging interpretable image features[J]. Management Science, 2021a, doi: 10.1287/mnsc.2021.4175.
[80] Zhang S Y, Mehta N, Singh P V, et al. Frontiers: Can an artificial intelligence algorithm mitigate racial economic inequality?
[81] An analysis in the context of Airbnb[J]. Marketing Science,2021b, 40(5): 813-820.